Comparison of Multiple System Combination Techniques for Keyword Spotting

نویسندگان

  • William Hartmann
  • Le Zhang
  • Kerri Barnes
  • Roger Hsiao
  • Stavros Tsakalidis
  • Richard M. Schwartz
چکیده

System combination is a common approach to improving results for both speech transcription and keyword spotting—especially in the context of low-resourced languages where building multiple complementary models requires less computational effort. Using state-of-the-art CNN and DNN acoustic models, we analyze the performance, cost, and trade-offs of four system combination approaches: feature combination, joint decoding, hitlist combination, and a novel lattice combination method. Previous work has focused solely on accuracy comparisons. We show that joint decoding, lattice combination, and hitlist combination perform comparably, significantly better than feature combination. However, for practical systems, earlier combination reduces computational cost and storage requirements. Results are reported on four languages from the IARPA Babel dataset.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Document Image Retrieval Based on Keyword Spotting Using Relevance Feedback

Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...

متن کامل

Fusion Strategies for Robust Speech Recognition and Keyword Spotting for Channel- and Noise-Degraded Speech

Recognizing speech under high levels of channel and/or noise degradation is challenging. Current state-of-the-art automatic speech recognition systems are sensitive to changing acoustic conditions, which can cause significant performance degradation. Noise-robust acoustic features can improve speech recognition performance under varying background conditions, where it is usually observed that r...

متن کامل

Comparison of keyword spotting methods for searching in speech

This paper presents and discusses keyword spotting methods for searching in speech. In contrast with searching in text, the searching in speech or generally in multimedia data still represents a challenge. The aim of the paper is to present a keyword spotting (KWS) method based on a large vocabulary continuous speech recognition (LVCSR) system, based on phonetics decoder, and keyword spotting u...

متن کامل

Multi-Task Learning and Weighted Cross-Entropy for DNN-Based Keyword Spotting

We propose improved Deep Neural Network (DNN) training loss functions for more accurate single keyword spotting on resource-constrained embedded devices. The loss function modifications consist of a combination of multi-task training and weighted cross entropy. In the multi-task architecture, the keyword DNN acoustic model is trained with two tasks in parallel the main task of predicting the ke...

متن کامل

Keyword Spotting on Korean Document Images by Matching the Keyword Image

In this paper, we propose a keyword spotting system for Korean document images and compare the proposed system with an OCR-based document retrieval system. The system is composed of character segmentation, feature extraction for the query keyword, and word-to-word matching. In the character segmentation step, we propose an effective method to resolve the connection between adjacent characters. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016